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Abstract

Linearized supersonic-Flow theory is employed

to evaluate the lift and drag of biplane celleles having

the "Busemann-biplane" configuration. Thb lift and drag

are explicitly expressed as functions of the thickness ratio

and the angle of attack; the coefficients involved are

universal for all Busemann biplane. Interpretation of

the results for various Mach numbers is afforded by a

similarity rule.

Most of the results are presented graphically.

It is found that the wave drag due to thickness of finite-

span Busemann biplanes is small;
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Introduction

A study of the linearized equation of motion of super-

sonic flow, with the velocity potential ý as dependent

variable, reveals that the differential equation is of hyper-

bolic type. As is well known, a Cauchy's boundary value

problem is then properly set if initial data over an open

surface is given. This is exactly the case with a supersonic

wing. Thus, following the exhaustive study by J. Hadamard, by

using the singular fundamental solution, introducing the notion

of finite part of an improper integral, and generalizing the

Green's formula to a space with non-positive-definite metric,

a solution for the differential system is obtained which bears

exactly the same relation to the distributed boundary value as

the potential to its corresponding source distribution in

Dirichlet t s problem in the elliptic case. Accordingly, the terms

"supersonic source" and "supersonic distance" were introduced,

Further investigation of the problem shows that we can

always introduce a fictitious plane separating the retrogressive

characteristic cone, so that by suitably distributing the

boundary value on the two surfaces of the plane, two distinct

solutions can be obtained for the two separated regions. Thus

the introduction of a diaphragm and the exclusive use of source

distribution for the determination of potential, following EvvardD
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can be justified. The detailed proofs of this "supersonic

source-distribution theory" are successively developed in a

Refs. 1p 2, 3e

Thus., the study of supersonic wings resolves itself

essentially into the same study of the potential due to plane

supersonic source distributions.

In the linearized theory, the Bfsemann biplane arrange-

ment becomes the one shown in Fig. 1, i.e., the top and bottom

surfaces are flat, the leading-edge Mach wave of either wing

intersects the other wing at mid-chord, and the airfoil slopes

are related by the formulas, for x > c/ 2

The typical case is then simply that of two isosceles triangles

pointing at each other.

In this investigation, the Basemann relationship between

gap, chord, and Mach angles shown in Fig. 1 will be assumed,

but it will not be neoessary to specify the shape of the profile

in deriving Some general results. It will be shown that the

velocity potential, including all interaction effects, can be

calculated by means of integrations involving the wing surface

slopes only. The general results will be applied to the

numerical evaluation of the wave lift and drag coefficients of

the typical Basemann arrangement having triangular wing sections*
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Notation

Coordinates

Cartesian x, z, , 9, 5

Ib.(h 4.L/ V/ ~'~",* S

U/ uniform free stream velocity in 2C -direction

Sdisturbance velocity potential

A P pressure. density ( /o • f for free stream)

M free-stream Mach number

Cp pressure coefficient

normal

cr local slope of wing surface in flow direction

A l8cal slope of diaphragm in flow direction

Ssupersonic source intensity

S. wedge angle

?eo chord

2-b span

C gap ý--- OVI

Sintegration area over surface being considered

5' integration area over interacting surface of other wing

Subscripts:

7T top and bottom surface

u,• upper and lower wing

r, zz of wing and of diaphragm

WADC -TR 52-276
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PART I. THEORY

A. THEORY OF SUPERSONIC BIPLANE

(1) Formula for Source Distribution

(2) Calculation of Diaphragm Distribution

(3) Solution of Integral Equation

(4) Calculation of the Potential

B. SIMILARITY RULE FOR TIP FLOW

(1) Conical and Pseudo Conical Flow

(2) Case of Busemann Biplane

(3) Similarity Rule

(4) Remarks

PART TIo APPLICATION

A. A. POTENTIAL, LIFT AND DRAG

(1) Potential

(2) Lift and Drag

B, COMPUTATIONS

(1) General Form of Velocity Potential

(2) Lift and Drag in Terms of Potentials

(3) Consequenbe of Similarity Rules

(4) Lift, Drag Coeffid ent, and L/D Ratio

(5) Computation of 7 and J5

C6 RESULTS AND CONCLUSION
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PART I. THEORY

A. THEORY OF SUPFRSONIC BIPLANE

Formulas for Source Distributions

The equation satisfied by the disturbance velocity

potential ý in the linearized theory is

where subscripts denote partial differentiation with respect to

the rectangular Cartesian coordinates j•, g , z . Here

denotes the free-stream Mach number, and the coordinate x is

taken in the direction of the undisturbed stream. It has been

assumed in deriving Eq. (1) #hat 5'&, , and 02 are small

compared to the stream speed, V * A consistent approximate

formula for the pressure coefficient is

)6a
2(2)

where k , )o are the pressure and density of the undisturbed

stream.

An elementary solution of Eq. (1) is the so-called super-

sonic source, , (p, J"z) = f.(-)2 - 7-)l

_ (;z _-provided that the value zero

is taken outside of the Mach cone that originates at the point

Sj . For brevity, we shall adopt the following

notation:
/ .(2 13 -'.)
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It is well knovi (Refs. 2, 3) that a continuous distribution

of these singularities over a surface parallelto the flow yields

a solution satisfying Eq. (1) and the boundary condition • =

on the surface. Moreover, Evvard (Ref. 4) has shown how a

distribution of these sources over a fictitious diaphragm at

a wing tip can be used to account for the interaction of upper

and lower surfaces of a monoplane wing.

We shall adopt Evvard's scheme here for the calculation

of tip effects for both upper and lower wingso placing a diaphragm

at each wing tip and introducing the conditions that these

diaphragms are stream Surfaces of the flow. The potential at

points on the top (r) and bottom (B) surfaces of the upper (L)

wings is given by

and there are analogous formulas for the lower ()wing. The

areas of integration 5 ! on the wing under consideration,

and S'on the other wing, are shown in Fig. 2.

Now the integrations over portions of S and S' can be

simplified immediately by use of monoplane results. First of

all, it is clear that, in all areas unaffected by biplane inter-

action, the wing-surface boundary condition requires that ---Uc/rr

where o- is the slope of the wing profile in the ?c direction.

"WADC TR 52-276
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Moreover, Evvard has shown, that fr monoplanes - and therefore

for biplane regions unaffected by interwing interaction - the

integration over the diaphragm can be replaced by another

integration over part of the wing. For any point forward of

mid-chord, i.e., , there can be no biplane interaction,

hence it is convenient to write the relatively simple expressions

for these points before going on to treat the interacting regions.

S< a• : no biplane interaction: Here monoplane results are

applicable. For both upper and lower wings, we have

X) 1- "( )d

nI I 1?(5

C L. : We consider now a point on the uper !•, top

surface. If the point lies forward of the Mach line from the

tip mid-chord (outside of area 1/ in Fig. 3), there is again

no biplane interference and Eqs. (5) and (6) apply. For a point;

in A/ . however, there exists an effect of the lower wing,

transmitted through the interaction regions of the tip diaphrýo

We can write

T ,,) = -• 11lu /U 1, C/3 (7)
S..z yzL

Here, and in subseqient formula s, we denct e by A (.• 9) the

slopes of the tip diaphragms of upper and lower wings. Thus,

WADC TR 52-276
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for any point on the top of the upper-wing diaphragm, T u T

is equal to Y /% , and this value has been used in

eq. (7). In regions unaffected by biplane interaction (e.g.

for • <a• ), A (•, 7) is the s&ae as for a monoplane

and Evvard's results will be used for such regions. In inter-

acting regions A is still unknovr, of course; its determination

constitutes the main problem of this investigation. We shall

postpone this to the next section, after writing an analogous

formula for points on the bottom surface of the upper wing.

All points of the bottom surface of the up iL

for which a -- are affected by biplane interaction.

Let Sj and C'j denote the areas of the lower wing and its

diaphragm that affect the point (x, . The wing-surface

boundary condition is

4-
2-r -aCJ;7 X,7

This is an explicit formula for

involving only known quantities. It may be noted that in the

region 4. - LT has been put equal to Z/ A L

Moreover, here AL is a monoplane value unaffected by biplane

interference, and is therefore known from Evvard's work. We now

have

L,t,

WADC TR 52-276
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a

where •u in Y.x is known from Eq. (8) and /L in £6'

is known from monoplane theory. Again the calculation of the

diaphragm source distribution, •- in Yz , is postponed

to the next section.

For the lower wing there are formulas exactly analogous

to Eqso (7), (8) and (9), which will not be written out here.

2. Calculation of Diaphragm Distributions

The conditions that insure that the tip diaphragms will be

stream surfaces are the conditions of equal slope and equal pressure

on top and bottom. Since, as Evvard has pointed out (Ref. 5), the

diaphragms of a rectangular wing tip are not vortex sheets. equal

pressures imply equal values of ý , the perturbation velocity

potential. We have, then, in region S ,

Z and (10)

The first of these eqiations leads to

LI (

LT T

EAD -TR 52-276
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The second Eq. (10) states that, in S

-I' - E J-A -d

"-�"• ~ rtf(cdS -f LT fao (12)

where xin , and S, is given by Eqs. (8) and (11),

respectively. We have now an integral equation for the diaphragm

slope t : for points 2, in

(13)
-A (ý-f )14' OTATa-4 +¶/CdJ

There is an analogous equation for AL . which Vill not be

written out*

Eq. (13) is to be satisfied for all points x , y on

the upper-wing diaphragm. For some areas, there is no biplane

interaction, i.e., . $' and ,'vanish, so that the second

and third integrals on the right side of Eq. (13) disappear. It

is clear that for these points the third integral vanishes as well,

WADC TR 52-276
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since £r and Sz do not contain any points • , affected by

interaction. Consequently, for non-interacting points x , ,

Eq. (13) reduces to Evvard's integral equation for the diaphragm

slope of a monoplane (Ref. 4).

•, Solution of the Integral Equation

Eq. (13) can be written in the form

J R~,u~~Y = F, (x, v)(lt

for points x, in , where 2 A, (x ,Y ) denotes the entire

right-hand side of Eq. (13), and involves only known functions. We

now introduce the new coordinates, A- vv-nemasured aling the two

families of Mach lines on the wing in question:
ZP

() / C) ~ A~;9~ lJ (7)

-V -V) 14 Z17 4 3

Our integral equation now takes the form

J '= ,.,)(16)SA (.,,4 v) o(,_

o Al-

for points .s,, i in S

WADC-TR 52-276
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The solution can now be found by means of the following

process:

' l f a I/.[ t VI,) of. =, Lw /4 C4',, o

14 0,'-. 717 ý1--4 IV;Z-

c/q,

say

£4+'' (17)
=77[ H(t-,.d

Differentiating this result with respect to C' we have

__ (,• /, = iA( rd• (18)
• " -D - ,,,, / -7,: v d

We now multiply both sides of Eq. (18) by '/,_

integrate with respect to L , and exchange order of integration

in a manner similar to that just employed. The result is

WADC TR 52-276
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which implies (dropping the primes)

(20)

This solution can be used to calculate the slopes /\A& in

regions of interaction. This completes Eq. (7) for ýUT , and,

by use of Eq. (U1), also completes Eq. (9) for ,8 . Eq. (20)

constitutes a generalization of Evvard's expression for the tip-

diaphragm slopes to vhich, in fact, it immediately reduces when

- lie in a region free of biplane interaction.

4. Calcujation of the Potential

Although the biplane problem is now cqmpletely solved in

principle, the straightforward calculation of • , especially

for regions of biplane interference, by substitution in Eqs. (7)

and (9), is extremely tedious. Fortunately, as will now be shown,

it is possible to eliminate entirely the integration involving A

in these two formulas.

In both Eqso (7) and (9), the term involving Xnim

i-I -ýL (21)

where nor w , A t , lie in region S. .

WADC TR 52-276



We return to Eq. (13), which holds for points in

and write it in the form

JM•,r V, (22)

where

- -~(23)

(23)

Actually, 9 / is the potential contributed at -'Al, V by the

lower wing.

The solution of Eq. (22) can be written down immediately

(Refo 6); viz.,

(25)

VWhD TR 5 2-276
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Since Eq. (22) is correct only for points 4, , Vl in fz-

i,%, for 4•j • - we must restrict - in Eq. (25) as

indicated.

Now for the points outside of the interaction region, i.ee,

for < z / C /1z • , the interaction potential # '(, J

is zero. Thus & (tL - is also zero for 4/4

We can now consider an integral involving C (- ) ; i.e.,

o)
0 "

Al c14 V,
where C 4 0

If kc • ' also, &(-1- /-)can be taken from Eq. (25):

-c24t -44~Q U~/ 416'

2 
(26)

after some manipulation.* Recalling the meaning of & (. w, v

(Eq. (23)), we can write Eq. (26) as

* Ref. 3s p- 36-4o.

WADC TR, 52-276
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PC V-

614 V "i2,I Zr 14• •-

Eq.(21,i hi • __ (27)

Since the only restrictions on Eq. (27) are k <

and ,it is exactly the result, we need for

Eq. (21).,in-which ft V-1 < C'

We are now prepared to write complete expressions for the

potential on top and bottom surfaces of the upper wing, by

substitution in Eqs. (7) and (9). Let be the portion of

for which i ! , as indicated in Fig. 3; then

_f a.- T /'1 o~ o0) U" (O - T.) e•o'dg'
iu_ -"7) rl - (cr -

7T 2 77?r

f qro) ()4 , L a'

Iz" -- LJ/T)a~4/4vd

v-ul

2 •J'•'(<a; 7) , -LA, (28)

t '/- v, (29)

WlADC TR- 52-276
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Formulas (28) and (29) permit the calculation of the

potential, and consequently the pressure distribution, on the

biplane. It is seen that, whereas we have succeeded in eliminating

the integrals involving A .. for the upper wings we are left with

integrals involving A L . to be taken over certain interaction-free

areas. In fact, if interplane interaction of a higher order were

encountered, such as an area of the lower viing influenced by

interacting'regions of the upper wing, it would always be possible

to eliminate the A integral expressing the last stage of tip

interaction*

W•AC TR .52-276



B. S•MIARITY RULE FOR SUPERSONIC BIPANE THEO

(1) ConicaJ. and Pseudo-conical Flow Field

It is well known that the flow field in the tip region of

a supersonic flat rectangular wing is conical. If instead of

being flat, we have, denoting by cr the surface slope along flow

direction x s that a, );W -90 only- ioe.,

along each chord station .c = constant, the surface slope is

spanwise constant - then we have, in place of a conical flow field,

a flow field which is "pseudo-conical," Thus, denoting by '0 the

disturbance velocity potential, the conical flow field will be

characterized by

while the "pseudo-conical" flow field will be characterized by

6L (2)

where / free stream Mach number.

While the conical flow field finds great jplication in the

monoplane supersonic wing theory, it will be shown that a rectangu-

lar supersonic biplane flow consists in addition, in the inter-

action region, of a "pseudo-conical" flow field* Thus the success

of developing a biplane wing theory depends much on the existence

of the latter type flowo

WADC TR .52-276
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(2) Case of Thiseinam Bjplane

Let us take a Biseuan biplanes and follow the result and

notation of Part I where the potential at aiW point (.x. ,) of

upper wing top and bottom surface respectively are given as

follows :

O-T'i Iw)-

A7 l /1o•.S, ~ ,~d

- T -/ or< e/- d -t J -

,V-. - ,,'u'+ # 0/

in which

o-•4 = -d' =.-- 'E • o

27 -- + " < ,.

WADC TR 52-...78
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It was shown in Ref. 3 that
a) U sT - cCz-Cr(,

MC- ,- /',[• •)- -iq'/•,(q,-,/,-l) "+ ,•••i V j/
a -L•- - 4 / / . .

2 J -A1
1

(74 -d#CI c.4rV" • _ '•,•-'

-2 -z A ,/ - U,(4, r4- v-, • A_ , t. z q, V,.p - C.

Usinig the re'latilon

2 If- V

-7I11--)--"

Z4 = /7/ .= -- =--= ,-

i • j l,, , -,,' l- 2 v,,•-"J + '•

-- I-

A) C [J 7 r 144,i (rVj,1 _
~- ir_

•ADC T)) A4"I -!

-,21-

-A-',£ 4  I/,#', -$- ~
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(6a) can be put in form

C) ) 7 r

- _-____/• - •-

(7a) can be put in form

Z X (()

d) fa.)

_ t•L-.r), J< qi/

7Tp7 7r.) _ a) .)

"•_ U(4-•mx !T ... -;:-' ; /,1- 0oa -, q - 7

s_ _ _ _7 
X 2 X

271 J2-0

* Ref. 3. Appendix 5.

17A-ix TR 52-276
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x A7

so (8a) again be put in form

-277fr ~6~/1O)dS c rraý 7(eef#'j J(L i (8)

Now by (6b)

A-"7-f5~~

SC (6)

4 _ 1711 IV ' jd )

V/ Z, r7

1V 7 77Ap

I1~ /Oi
WADG -1~ 2276ý
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so

A77T-'aL,

Lr, aj 4,, A

7= M,1 o 1w, 7 ) 7 JiM 14RI )jýV (1)

A42



Substituting (5),(6), (7), (8), (9), and (10) into (3) and

(4), we see that

and

(12)

i. 2~. 3 •. denotes regions of interaction, which

"is actually a "pseudo conical" flow field.

3. Similarity Rule

It is seen from above that in eq. (11), (12): for x <CL

Sterm does not occur, so flow field is conical, for x > a,

'/x terms occur, so flow field is "pseudo conical." However,

for both regions, the same similarity rule holds, i.e.:

"For different values of Mach number, 9 '/•, differs by a

constant factor //•9 , provided the ratios /3<//( and -/•

are maintained constant*"

This constitutes a "similarity rule" for supersonic

flow at different Mach numberso It leads directly to 'the determina-

tion of a Mach number 'correction factor for converting the biplane

property calculated at one Mach number into that at other Mach

numbeil.oe

WADCPTR 52-276 -25-



Epressing our similarity rule in terms of Cp , we have

for Xr ,

"spy'< 
(12)

To evaluate the correction factor for lift and drag over

wing tip region surface, since

- -

(32

we obtain: (14) S!/

Thus, in Part II, belowi it will be found that at zero

incidence, s4= iT, C/-f = v3 C.0 It follows that

at any other Mach number

a,82 3 -C..o =(1-5)

4. Remarks

It might be noted that the above Similarity Rule is not

limited to bi-plane application only. The same holds for delta

wings as long as the leading edges lie either outside of Mach cone

or in flow direction, and C7 cr (x-) . However, as soon as the

leading edge goes inside the Mach cone, the Similarity Rule ceases

to hold. Indeed, even in the simple case of conical flow, it is

easily seen that Tschaplygin's transformation will give for each

Mach number an independent boundary condition for the Laplace equation,

which much complicates the problem.

WADC TR, 52-276 -26-



PART I* APPLICATION

A. POTENTIALp LIFT AND DRAG

- (l)- Potential

With the Similarity Rule established, the studW of

supersonic biplane is greatly simplified. Indeeds the on3y com-

putation needed will be for the case of m = . For all

other Mach numbers, the required conversion relationship will be

furnished by this Similarity Rule.

Using the general expression for potential derived above,

we have

2 7 7o )i ~' 2 ,17 f/ >, -V, ,

g,= , 1o .dJ .

41 2, •

A T/ .,2-27
4

'2

277 2'7 I 2'

WAC R 2-2 -27-7



ihere it is understood that '4 and S com in~ only,

where the inrteraction is effeated. Br carrying out the integra-

tion as given in Ref. 3,p we have

M~ 77(~2~Y~)

M 777 M 7r

~ )LA4 , 4C 0 4-f

=~A - - +7 V/ 2 ~~__

_j 11 -- ___

""I-,,L4 to/ V- /

2- 2-L ,ý A~

4 ~i- k)v L) -A'E41, Vdý M JC z)4,-i4" -e-A,-

04ý .iJ. f- le

IZ 24 - &I--

2

- 2 V(-i,,A4LtjV~

WADC1 CT 5227



-
7777 -

{O 7.-{~

*J./ A -.

7f 0_'_ _ __"2

7~V, - m! cýto)

A, 1
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(Appendix 5m Ref. 3

(a) £1u A
#c4 T~to)' w -- q~/ud 7-;

,r,

Ua

77-

-c f~ y'xL O

wbere by- Appendix 5 t Ref - 3

(1) ~1-~a77

(2)~
f -.

WADC.T-R,ý52-27 6 -o



'when 0t-

(b) 0,~ - ) y a

L7_f

(0 2- 77 I

Sidl
Yo

(c7 -GUT /0J- I

= x
XAA'277

-2 Yo' 
2/<i

*APPeniiE 5* Check Ps 3-5s116 Ref.j.
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(2) Lift and DrM

With the velocity potential determined# it remains a

simple matter to compute the pressure coefficient, lift and

drag* By the linearized theory, the pressure coefficient is

given as _ _ 2 D q9

2-4

The total lift and drag over a surface are obtained from

the Cb distribution by simple integration

/'0
D 2-•

With linearized theory, the lift computation can further

be simplified to the following form, which is especially useful

when curved surfaces are involved:
_ • (X 2 9' : Q

Z lbZ2

In case the wing has an isoceles triangular or "diamond"

profile, since the constant surface slope can be taken out of the

integral sign, the determination of drag simplifies to the

following form

For a multiplane system, with projected area J in

plan form, the lift and drag coefficients of the system are obtained

as follows: 2, = I
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Be COMPUTATION AND RESULTS

ill General Forms of Velocity Potential

The potential at a point /.Y, V) or (": •) in region f) of

the upper wing is

A'' V/

J'10 12 /,,- (:.• + IL • ":

2 l (i d

In fact, (1.1) and 1.2) are general forms of the

potential in all regions. In region C * the point lx,) or (",v

considered is beyond the influence of the rear half diaphragm,

and so the term V--

-1ýCy
4 V-

vanishes in passing from regionl to c # and remains nil on the

rest of the wing surface. Further, since - differs from zero
A-•cz-

only for f > 0 on the wing and u -- on diaphragm, the

integral
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goes to zero as (x, t) goes to the hyperbolic boundary separating

regions D and C. In fact, in all the regions A, B, C it

contributes nothing, as the effective area for - iin Xro t

disappears. On the other hand, the integral

IT f

degenerates 
to

I Ic

in regions A, B, C. In the regions A and B, i.eo1 those areas

forward of the hyperbolic L L- A- cY/q , the effect of the tip

region of the neighbouring surface cannot be felt and the aniytic

expressions for the integrals are available.

There is a difference in the surface slope c'- for the region

S < c and 3 - a. but the formulas (1.1) and (1.2) remain true.

In region A, the tip effect of the supersonic monoplane

disappears, the flow reduces to that of a two-dimensional Ebsemann

biplane.

The structure of the present theory is based on the -Linearized

theory of potential flow* As a consequence, the potential will be

linear in the angle of attack c; . and the thickness ratio 5,. in

the form

-+ fo (1.3)

WADO E• 5• 2-2' ,6 ' <V (1.4)
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For the same point (. ) on the lower wing, sieillyr we have

(1.5)

OtH) (cd')

(1.6)

Lift• and, Rq in Term of' Potential

In the linearized theory, as shown before, we have

L/I fj+ (2.1)

Q2~JOLe +J-Jy (2.2)

where the (+) sign stands for top surface and the (-) sign for

bottom surface.

With the distribution of oý in the Busemann biplanes

""IT ---

U"Sf•F 0(- (2.3)
V4 -r - e+ F -O- -

and noting that ) 0 , we have

/ = "J7 9- U 7,)/- + (2.4 )rIM)

lb 24) $a• ,+ -+ (261)7
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The ,total lift and drag of the biplane beomems

Z/2PU go cJfA12-,) - (2 ]d

= f1~uri2~~ - &J (4.) ~t(2.5)

(2.6)

(2.7)

2/Z/ 9 cJ/u( (24))Dz fI -f 46

IT (S) (d)(28

3. Consequence of SimilArIty Rules

a* Lift and Drag over the Tip Region

From the Similarity Rule for the tip flow of a Busemann

biplane

and since C and d" can be separieds we have

(3.1)

where

WADC .TR 52-276 -" -36-



Introducing - w2 o we obtain

V 7

(3.3)
- c? i, i",

T (3-4

where Z and P are universal constants for anl Bsemann biplanes.

b. Lift and Drag for Off-Tip Region

Beyond the tip region, the flow is two dimensional. So

-7Tc ~ (d-) 7-r

cu (2~) = ,6 v / -_(2 7-2,(3-5

u-'ý T (2 C "(2 t)-

and we have

S7"7- (2a) -3 ' r24) (3.6)

277- d~
7,7 u ?(-2 (e,) 0 (3.7)
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Let Z o- denote the lift of half biplane system

beyond the tips

0 4 7 2T2

2 7ra(
77 /3

(3.8)

(3.9)

-where A

(4) Lift Coefficients Drag Coefficient, and L/D Ratio

In view of (3.3) and (3.5), the total lift and drag of a

biplane is

Li 2(Ze Z / Lt)

a--/ 4,/.(3 2 ,

Defining the lift and drag coefficient based on the

projected area of the biplane

(4Z.3)

we get 5 -f4 1-38-

VIM TR 52-276(4)



q• ,. .t'•f•2 , 2 -D'zJ. (4,5)

and

Z(47+ z- (4.6)

(5) Computation of Z' and.

As shown in (3),

2Q

7 (d-) r)
- --n) - ( (5.2)

Setting /0 - e have

(5()

_Z) _ (J, , 7

oI C,,Q ' (5.4)

Let J (o0/.p- 4-3-

(o0 )/() ff' =

-)s,.z A -f Z f

SM ~o~~~J -ff ,,'~ -CIfO-a+
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where all the coefficients of d and c are functions of(x,$).

Through (5.1), the general forms of potential (1.1) and

(1.2) become respectively

J r - ] (5.6)
2 L r7 r'7J

C< 2,4a-- T 2/3, TL' '-T4 2JI-Te
Sfi 

+ 4fia

For regions C and (3)2 . we have

- q.<, = A(,_ , - / /-1 J+i j -/ + . 2- A<+Jii? 7

Te IT , ,- < -7 < (5.9)
"SJr

For. region (A),, the tip effect becomes nil so

+s T (5.10)

U V413= A AJ
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For region (t), vhich differs from (B) 2 by a difference in

surface slope and by the absence of interaction between

surfaces, we have

U (5.12)

= ol [-A i-23~~ ,.(5-13)

For region (A),

7 • = .A• + •'
U (5.14)

(5.15)

In fact, the coefficients A', • , , Af, •d- T

as well as the integrals

Sr/ - ", / Cf . zf J12 Jr ~ and Td!fr

can all be analytically evaluated. Therefore the potentials

in region /4 and a can be put in purfy analytic form

For the rest of the integrals

mumeral computation and graphical integration becomes necessary.
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(5.1) Computation of • •J (for region D and C )

The potential contributed by the neighbouring surface is

c• / U / Q/f•c)dS' 01/,lcf ] (5.16)

where • L is the monoplane value given by (Ref. 3):

IV/ •(5o18)

Thus

1 -- (' J- (5.19)
LT M AL3 ll

Here the quantities )�C _- belong to forward half of the wing, so

that, with GT --T-o -d - i -13 ,and 8 = we have

A,2 2 - ( --7,),
= (V,#2I=o -0( (5.20)

By Appendix 4, Ref. 3:

YC t4- /~c,~,)A V /u .2/1)
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2• = 2 •, -,.-c Z•,-u •-

4---_--__•, + ;'I/-- + j A,.C-I

- ~7 / z . I-/ -,tvY~..+v,)-,,,,,/ -- ') ,-+ ,'-112c- (5.22)

- J' <<'-•) " '-4 Al •,r-C , Ael Ic

Note that the limiting value of ?,'goes to zero along

the hbyperbolic boundary Ai '-- off the wing and thus 'is

continuous across the hyperbolao On the other branch of the

hyperbola on the wing, ,,'satisfies the relation (Ref. 3 Appendix 4)

which, in fact. is the expression for the potential 9/for region A

and 3 -. These remarks serve as a check to the numerical computa-

tions.

Sinoe in region C D) and over the diaphragm the expression

for 9 / is complicated, we carry out the computations numerically

for points in these regions. As 9?'only enters into the integra-

tion over the regions extended by the inverse Mach cone# we need

only compute for points bounded by the hyperbola U v- = Aýc"/4

the trailing edge of wing and the inverse Mach line on the dia-

phragm extending fro trailing edge tip. Hence, using , /e

S= 6 = /o . the range of computation will be as follows:
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d• L- = 50

J,: 73 7, 5, 9, /I, J 2 2 23,24

Our computation starts with a chosen v- (sa = 4), and pro-

ceeds with the formulas (5.21), (5.22) in computing 1, and T2 for

a range of At..

Fig. 4 & 5 present the results for I, and 12- . Fig.

C, 7 give J-. o, .ý-) and "j- (", v.).

For the sake of convenience, we use the principal branch

in the identity

for determining c.ý-4 -/ .t.

(5.2) Computation of U -Z (for region D and C

Lr >LA(. C' df - ?/4Cd (5.23)

- f t(.4

= - + _ , (5.25)

where Z7' -,'-2Z,'
S Z, -(5 .26)

By Appendix 3. Ref. 3:

- -/•', _( 5.27)
7 • ' -/ v -- / - / ' - ) •'4 + '- 1 ' e + -// t.Z - ( ," O •-t V I) A d ,

Z•#�,�/A,.•4+, O' fi{6, -- I J ', -,-- J I' '-
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The limiting value of • along the hyperbola i-1 v--5o is

zero off wing and constant iU (son the wing. So it in continuous

across the curve AA v-= j-o * - is$ however$ discontinuous

across the midchord. All these have been used as a check for the

numerical result.

The numerical data and the computation procedure are

similar to those for In

the principal branch of 41; x is used. In facts much of the

computed result for 91 /can be taken over, and so the labor of

calculation much reduced.

Fig. 8, 9 present theresult of J•/,,) and ITjr u,').

(5.3) Graphical Integration of ff-TI? and f fi#i

LfI

4 W

Since potentials in regions c and D enter into the expressions

for lift and drag only as ý (2 a-)• we are concerned, therefore,

only with those points ( r,, ) along the trailing edge 2- - a .

For numerical computations we choose the following four points:

= o , , (/.)4)/1,

For the last point at tip, the limit of the integral converges to

(Ref. 3):
A DC ,TR5-o2). 7 -4 75- ('o - ,oJi). ,
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Writing the integral in the form21 4-,. -d - / ___ -___

44-'

= J" 7 , < , -v•,_ • -j

(<L4,', v, -4/ (5.29)

L -°;- (4W,-w)d7' -i' t2 (,Q 1

(co. /o, we get

The error involved will be of the order 6 = . oo3 *

After the point (Li,. t ) was chosen, we sinply have to

form the integral

(q,-a' , -'

over #he interval ( 5-6/, -. ,_ o Ia) on the diaphragm off wing.,

with Jc, ( x /, v) and J ý-4¼v) known from (6.1). The

graphical integration is performed by using a planimetero The

last correction term d 7 is approximated by

The result is plotted in Fig* 10.
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II
(5.4) Graphical Integration of

_/ and

It is seen that the second integral is contained as a part of the

first integral, and can easily be separat ed from the first at the

last step of integration. The values Ja' andJj have been computed

in(2).

The integrals are evaluated graphically for points ( ',,t,, ):

(I10/9, iOJf), (15.284,13), (17.284,U), (19.284.9) in region D.

and (2•.284,7), (22.284,6), (23.284,5), (24.2 84,) in region C

for which the second integral disappears and the first reduces to

In each of the stripwise integration with respect to "-and Zf-

the same technique as explained in (6.3) is adopted for the

neighborhood of the singular point. Results are plotted in Fig. 11,12.

(65) ComputAtion of -f, C4r)4 I

As shown in Part If A(1), (.)0

For region (B) 2 and C

1718):• I , 2

.r- [ f7ix
-(s ~ ~ ~ [ A .,-l-,<+) X-A) 0.

71 (5.31)

For region D
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/ -.- 7 1 (5.32)

- • *•+- * ,-m_.oe,
77

where x- / -

8 A

= A-' - /-1 -jx 77-• -

C= A-i5

and v -0 V", '.. - are noted,

Along 0O
- f_//Och = I + /~ a

Er putting cF a and dianging the sign of oý in

we get -fQ r a <o df
IJSr

The points I(r,, ;r) computed are: ;xr - 20; • =0, 1.615,

4o44, 7.272, 10.101, U.515, 12.929, and 14.343. The results are

shown in Fig. 13.

(5.6) Computations of 2 (0L (F-T)/d°')dI9

From Part IIA(1), (ii), with O ,4& ( " z)'1)=

we have:

for region B2 , C
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for region D

'"(5.34)

where

+= + f

The same set of points on the trailing edge as in (6.5) is

used. The resu3t is shown in Fig. 14.

(5.7) Computation of Potential in Region B1 and B2

The potentials outside of tip interaction region (C and D)

are
7- 7r"Hz" •Jz

(5-35)

Llwht)3e ql'= (5.36)
-7 +: •'L,•r 7" L -(5"1T) 2r)¢

flT '71ý 1 ir L 2

(see Part IA(8)).

i) Jr ,ý ie., l <,)

S((5037)

LT 77f 1-oclj T -7 (5JY'-37)7
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77 Cp 0)/ C/~S]i W ,1 (5.38)

a?

Now$ with /• =#

-P7,6 (5.4o)-77 q ' (J7 - A- 7, t

- , fr 4 (())
7r /; _ o.) #rptp (5-4 2)

Iif 0-) 1

r"BZaR. , ig

p,-• etc, are in analytic formso,

ii) For B2 , i.e., a---< )'<2oZ. ,CL -/ C-- "

L, = ?z Jz/=r 0
c;[o )_m \' ... I I '

77 ~o V 7 ' c)~ (5.43)

, /k

S:.= = .[- f f< a)"" 0 f iuc-"<' J

.•'d<" .r'z.
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where, with

f~ ~~z 1/ t )d T- f2JJ- V

/4/o x
O-V 77f .- a

So (0and ý, (e~are again analytic,

The limiting values of these integrals on the boundary

separating A and B are

S.,4> f /o/S = a

" " f /r o o = 7 ,! .) >=e J

which check the computed results.

In the computation, the integrals such as (5.37), (5.38)

etc. are first evaluated, then ) etc. The computations

are made for points (y, V) as follows:

for /2a) 2= ,

13 o 2~I 2o '7,5 -2 , 0o.

for V(a-) '---r /

The point ( 3oc' ) is the intersection of hyperbola a :- 50

and the trailing edge -x 2 4 = = o @ Results are plotted

in Fig. 15, 16.

(5.8) Computation of Potential For A1 and A2

For Al: 2 -, 77 ?(5.5)
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For A2:

=O 4(J (( ) r =(5-47)

13 JIr"

(5.48)
- / f/":o) q"'4 U()'/

= -(2a-x rr& 77X

So 7 _ (_ 17 , r -77 ..r: 77 4

L7i(r U ý u lf7 (4)

td) (59)

S-c.77 77 (5.50)
C: U

(5.9) Resume of Results of Computation

The results of computation for potentials in region D and

C are combined according to (5.6),q (5.7), (5.8), (5.9), (5.10)

(5.11) etc. to give the final form of potentials, i.e.

9•' x.) = .1) + %, :.x)J

where 4' = A4, vi3 ; = c, 2a.

The resultant q9"() etc. are plotted in Fig. 17.

Finally, the functions

and -"2

WADC ,TR•.52-216 -52-



are computed for points along the span over the tip region,

from o to 2,= = 2o , and therefore the contributions

by the angle of attack o' and the thickness ratio 6- on lift and

drag along the span are obtained, as shown in Fig. 18.

Integration by planimeter gives

-0 (00 (I

f5ý(z) 99 /z)I

So in (5.3) and (5.4)

L 1o - " 327 (5.51)

/2.9•.2

/o0t (5.52)
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C. RESULTS AND CONCLUSION

h'om the resu3t s of computation, it is obtained that

L =2.3 27

Thus the lift and drag coefficients of a BDsemann biplane with

chord length 2cz, span 2b, wedge angle d- at Mach number M4 #

and angle of attack ag are given by (4.4), (4.5) aid (4.6) as

follows:

-82- P(

-4 >, IV 1--/3 [W
_ ' gV,#-3. 3 -16)' o.e . rV (2)

cy12 (d)rZ (3)0€ I -t 1,dR - 3." 3 46&

where -,. 2 . ,i=Z

Figure (19) gives t a plot for- 4[-/,, (which is also 6'•"

against Mach number M with different aspect ratios. Figure (20)

gives the same plot for C S' . Thjus, for any given aspect

ratio of the biplane at a certain Mach number, CL and CP can

immediately be obtained from the curves by following relations:
CI .__

Figure (21) gives a plot of L/D against a? for different

jz-o ratios.
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The limiting case of the present theory occurs when

i.e.9  ý4, = 2 # in which case the two tip Mach cones on same

wing meet. These limiting cases are either given in plots by the

point 0 0 or indicated with incorporated tables* It may further

be mentioned that these limiting cases lead to a unique result

for L/D ratio as followsat

( 0 0./77/

From the computed result, it is easily seen that a Busemann

biplane of finite span highly approximates a flat plate, as the

wave drag due to wing thickness is inherently low.
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